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ABSTRACT

Two-node kernels of the polynomial, semi-analytic
and analytic nodal methods are developed for the
implementation in the nonlinear iteration procedure. The
polynomial and semi-analytic nodal methods are based on
the quartic expansion of the transverse-integrated neutron
flux and the quadratic leakage approximation. The basic
functions of the both methods are chosen from the
orthogonality condition.  That results in an efficient
algorithm for the solution of the two-node nodal equations:
the initial system of 8G nodal equations is reduced to G
and 2G equations, where G is a number of neutron energy
groups. Implementation of the analytic nodal method
(ANM) presents an alternative way to a solution of the two-
node problem. The surface-averaged current is expressed
in the explicit form in terms of the node-averaged flux, the
surface-averaged flux and the transverse leakage expansion
coefficients. The five matrix functions used in the
expression are computed using the Lagrange-Sylvester
interpolation polynomial. The surface-averaged flux is
calculated from the flux and current continuity conditions.
Numerically, the solution of the two-node problem is
reduced to a computation of G eigenvalues of the buckling
matrix, a calculation of the five matrix functions and a
solution of G equations with respect to the surface-
averaged flux.

Accuracy and efficiency of the methods and
algorithms are compared for the LWR benchmark
problems. The semi-analytic and analytic nodal methods
demonstrate similar accuracy. In the case of 2 neutron
energy groups, the matrix function theory approach to the
solution of the two-node problem shows the best
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efficiency. A saving in the CPU time is about 25 % for the
computed problems.

[. INTRODUCTION

K. Smith' has proposed the nonlinear iteration
procedure as a solution technique for transverse-integrated
nodal methods®. In this approach, the coarse mesh finite
difference (CMFD) method is forced to match the results of
the nodal method. Coupling coefficients of the CMFD
method are computed from a solution of the nodal
equations for two-node problems. Thus, a solution
procedure is decoupled into a local solution of the nodal
equations for two-node problems and global iterations of
the CMFD method. In comparison with traditional nodal
solution techniques, the nonlinear iteration procedure
results in a reduction of computer memory requirements
and computing time.” The nodal expansion method
(NEM)® is the most popular method used in the nonlinear
iteration procedure.*® Other methods are the analytic
nodal method (ANM) implemented in the STAR code®
and the semi-analytic method” applied in the SIMULATE-
3K". A combination of the ANM and NEM has also been
recently proposed."’

Although progress in nodal methods make possible to
perform fast and accurate LWR calculations even on
personal computers, the research in this area is rather
growing. Digital reactor control systems, on-line core
monitoring and training simulators require the calculations
in real-time.> That is stimulating the efforts in the
improvement of efficiency of nodal methods. From the
other hand, the polynomial nodal methods, like NEM, are
not very accurate for realistic LWR problems, when
applied on the spatial mesh with 1 node per assembly."
Analytic and semi-analytic methods increase the accuracy
with a minimum overhead in computing time.
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Two-node kernels of the polynomial, semi-analytic
and analytic nodal methods developed for implementation
in the nonlinear iteration procedure are presented in the
paper. In the polynomial and semi-analytic nodal methods,
the transverse-integrated neutron flux is expanded into the
orthogonal set of basic functions. Legendre polynomials
are used in the polynomial nodal method (PNM). In the
semi-analytic nodal method (SANM), the 3 and 4"
Legendre polynomials are replaced by the modified
hyperbolic sine and cosine. In the both methods, 3" and 4"
flux expansion coefficients are expressed in terms of the 1%
and 2" expansion coefficients in the explicit form. That
results that the initial system of 8G nodal equations of two-
node problem is reduced to a set of G and 2G equations.

A two-node kernel of ANM is presenting an
alternative way to a solution of the two-node problem. The
approach is based on matrix function theory. Adding two
constraints, the transverse-integrated diffusion equation is
led to a boundary value problem. The problem is solved
analytically and the surface-averaged current is expressed
in terms of the node-averaged flux, the surface-averaged
flux and the transverse leakage expansion coefficients. The
five matrix functions used in this expression are computed
using the Lagrange-Sylvester interpolation polynomial.
The surface-averaged flux is calculated using the flux and
current continuity conditions. The two-node problem
solution is reduced to a computation of G eigenvalues of
the buckling matrix, a calculation of the five matrix
functions and a solution of G equations with respect to the
surface-averaged flux.

The paper is organized as follows. In Sec. II and III,
we derive the two-node nodal equations for PNM and
SANM, respectively. Section IV presented an alternative
approach for two-node kernel in an application to ANM.
Sec. V. demonstrates the results of LWR benchmark
problem calculations. A summary and conclusions are
given in Sec. VL.

II. POLYNOMIAL NODAL METHOD

The transverse-integrated neutron diffusion
equation is written in the dimensionless form for x-
direction as follows

d® x (122 K (A% f o
~ Lok + Y (B} ), obw) =25 sk @), (1)
2 e g K Dex
du o 4D}
where k is the index of the node [-Ax, /2,Ax, /2]x;
[- Ay, /2.4y, 12]x[- Az, 12,A2, /2]; u=2x/Ax, ;
ue [—1,1]; g is the index of the neutron energy group;

(Dlg(u) is the transverse integrated neutron flux;

Ax, ) x
(Bl% )gg' = (4ka) { Zlﬁgsgg’ K i Ek le(g %g} .
g €

| | .
Sk ()y=——1X (u)+——1% (u) is the transverse
e (W) Ay gy (W) Az, C)
leakage; and the other notations are fairly standard.

The basic functions in the polynomial nodal method
(PNM)'*" are Legendre polynomials. They are given as:

Py(w=1; P(w)=u 1>2(u)=%<3u2 -

P;(u)= %(5u3 —3u); Py(u)= %(35114 —30u’ +3).

The transverse-integrated neutron flux is expanded into the
basic functions as

Dy (u) = O +Za
i=1

gxll)

where (Dg is the node-averaged neutron flux; and algxi is

the i-th flux expansion coefficient.
The transverse leakage term is expanded up to the 2" order
as

k

Sge () = ngx, 1 @)
where sgxi is the i-th coefficients of the transverse leakage
expansion.

The 1* and 2" expansion coefficients are computed using a
quadratic leakage approximation, as it is described in Ref.
2. In this approach, the expansion (2) is required to
preserve the node-averaged transverse leakages for the
node k and its two neighboring nodes in the x-direction. If
the node k is a boundary node, the expansion (2) is required
to satisfy the neuron flux boundary condition. Introducing
the dimensionless transverse leakage expansion
coefficients the equation (1) is written in the form

d2 k ~k
0w 3 (B2),, @b ) = Z S () )
g'=1
2
~k _ (AXk) k
where s,; = 4D1g( o -

The node-averaged flux, eigenvalue and transverse
leakage expansion coefficients are assumed to be known
from the results of CMFD iterations. The other coefficients
of the neutron flux expansion are obtained by considering a
two-node problem for each node interface. The two-node
problem contains the adjacent nodes k, k+1 with common
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interface. In order to obtain 4x2xG coefficients of the
neutron flux expansion (4 expansion coefficients x 2 nodes
x G neutron energy groups) the following equations are
used: 2G neutron balance equations, 2G 1*-order moment-
weighting equations, 2G 2"-order moment-weighting
equations, 2G equations of the flux and current continuity
at the internal interface between two nodes. They are given
as:

Neutron balance (for nodes k and k+1):
S (a2) wk <k
{3agxz + IOagx4} Z(Bk)gg,cbg, =551 @
g'=1

I"-order moment-weighting equations (for nodes k and
k+1):

G

~15ag, Z() aga="Spi )

2"_order moment-weighting equations (for nodes k and
k+1):

G
~3Saga+ Z(Bk) Ao =-S5k (6

Current continuity at the interface of the node k and k+1:

k
~db {ak +3ak, +6ak s +10ak , |-

k+1 k+1 k+1 k+1 k+1
Sd ek st et —10a80 |, ()

k
g

Xk

where dlgx = is the dimensionless diffusion
coefficient;

Flux continuity at the interface of the nodes k and k+1:

Tk k k
D, +a,,; +a, 2+a 3+a

gx4 -
T k+l1 k+1 k+1 k+l k+1
D," —a,) +a,0, —8,3+ay. (8)

The obtained equations are decoupled. The even flux
expansion coefficients of the node k do not depend on the
odd flux expansion coefficients of the node k and any
expansion coefficients of the node k+1.

Furthermore, using Eq. (5), the 3" expansion
coefficient is expressed in terms of the 1% coefficient as
follows

G
K 1 kK, ~k
8gx3 = 15 {Z(Bi)gg' agx t ngl} ®
g'=1

Eq. (6) results in the following expression for the
4™ expansion coefficient:

=35 S o

Sx2 T Se2 } (10)

Substituting Eq. (10) into the neutron balance equation (4),
we obtain a system of G equations for the 2™ expansion
coefficients:

g 2
Z}{%gg +7(Bi )gg, } ak, =
=
G
Z(Bk) {gxo iigiz}. (1)

Substituting Eq. (9) into the neutron flux and neuron
current continuity equations (7)-(8) we obtain 2G equations
for the 1% expansion coefficients:

Flux continuity:

i{ (Bk+l) } af) +Z{ (Bi)gg}a';,xl =

Kl | kel |kl }_{ =k , .k k }_
{d)g +taypo tagg D, +ay +agy

%{Eg'jj' + 551 } (12)

Current continuity:

G
dgl{Z{ 6gg’ + %(Biﬂ )gg'}ayxll } -

g'=1

i 5o 0208, b -

2.
d'g‘;'{ 3agy +10ag, —gsg';q‘} +

dgx{ 3ag, +10a5, +§

} (13)

As a result, the initial system of 8G nodal equations is
reduced to G equations (11) with respect to the 2™
expansion coefficients of the node k+1 and 2G equations
(12)-(13) with respect to the 1 expansion coefficients of
the node k+1 and k. The even expansion coefficients for
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the node k are known from the solution of the previous
two-node problem (k-1, k).
When the neutron flux expansion coefficients are

k,NOD

computed, the surface-averaged nodal current J,',.\7 is

calculated from the expression:

NOD k+1 k+1 k+1 k+1 k+1
JENOD ket {akel 30kt L6 okl 10 ak] |

An implementation of the nodal coupling into the CMFD
method is performed by the same way as in the NESTLE
code™.

It is worth to note, that Legendre polynomials P;(u)

and the NEM basic functions® adjusted to the interval [-1,1]
satisfy the following relation

PYEM(yy) (1 0 0 0 0 Py (u)
PYM@y| |0 12 0 0 0 Py (u)
PNM@yy[=|0 0 1/2 0 0 |x| Py(u)
PMMy) [ |0 -1/20 0  1/20 0 P;(u)
Py, (0 0 —1/70 0 1/70) (P4(w)

The NEM basic functions span the same subspace as
Legendre polynomials. If the moment weighting procedure
is used in NEM, both PNM and NEM become equivalent.
In our opinion, the nodal equations of the PNM two-node
kernel are simpler that that of NEM.

III. SEMI-ANALYTIC NODAL METHOD

In the semi-analytic nodal method (SANM)"*** the 31
and 4™ Legendre polynomials are replaced by hyperbolic
sine and cosine. The sine and cosine are modified to
preserve an orthogonality of the basic functions and
normalized to unity at the right end of the interval [-1,1].
Resulting expressions for the 3™ and 4™ basic functions are
as follows:

Sinh (OL u)- m -1 (sinh)P, (u)
Sinh(och)—m 1 (sinh)
Cosh(oc'gX u)-m* (cosh)Py(u)—m

P, (u)= ex0
1) Cosh(och)—m

P;(u)=

ng(COSh)PZ (u)
(cosh)

axo(cosh)— m*

Ek A
where u =2x/Ax,, o(]gx = Lfﬁ;
Dg 2

1
gxl(smh)zNL smh(a WP, (u)du ;
[

ex2

1

m'gxi (cosh) =% cosh(agxu)Pi (w)du, fori=0,2;
T

N; =2/(2i+1), for i=0,1,2.

The SANM equations are obtained in the same way as
described in Sect. II. The 3™ expansion coefficient is also
expressed in terms of the 1** coefficient as follows:

gﬁ—A*{§K ) 2+ 5 } (14)

sinh(alg; )- mg, (sinh)

where A¥ =
gx k 2 k .
(oc ox) Mgy (sinh)

The 4™ expansion coefficient is expressed in terms of the
2" coefficient:

@

Qs = {ZX B ), a 2+§b} (15)

cosh(ocgX )- mgxo (cosh) — mgxz (cosh)

where BX =
x 2
(oclgx) mlgxz (cosh)

Substituting Eq. (15) into the neutron balance equation
and Eq. (14) into the flux and current continuity equations,
we again obtain G and 2G equations, which have to be
solved for the two-node problem. They are as follows:

Neutron balance equation:

mpo(cosh) 3
k
my(cosh) [k

k _
where E,, =

Flux continuity equation:
S k+l (2 k+l
+ +
Z{Sgg' + Agx (Bk+1)gg' } At

g'=
i{ Byy +A§x (Bﬁ)gg’ }ag’xl =

g'=
{51‘ +a k+§+ak+1 }—{5§+a1;x2+agx4 }—

—
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Ak+l Ng];—l _ Ak N;;l : (17)

Current continuity equation:
k+l S k+l (R2 k+l
+ + +
dgx Z {Sgg’ + ng (Bk+l )gg' }ag'xl N
k S k (2 k
dx Z {Sgg’ + Fy (Bk )gg' }ag’xl =

k+1 { k+1 k+1 k+l k+1 ~k+1 }
d 3a,0 + Gy Ay — By Spa [+

dk {32, +GE ok, + FE 3K, |, (18)

oclgx cosh((xk )— ml;x, (sinh)

where F;; = )
( k )zm , (sinh)
ko Smh(a )3 mgxz (cosh)
& Cosh(och)—mgxo(cosh) mgxz(cosh)

When the nodal equations are solved, the surface-averaged
dal JrNOD d
nodal current J ;' (," is computed as

k NOD k+1 k+1 k+1 k+l k+l k+1_k+1
Jg X+ d { gxl _3agx2 +H gx? ng agx4 }9

k+1 k+1 K+l o
kel | Oex cosh(ay ) —myy (sinh)
where ng - k+1 k+1/o: )
sinh(0tgy *) — My, (sinh)

IV. ANALYTIC NODAL METHOD

An alternative approach to a solution of the two-node
problem is presented in application to the analytic nodal
method (ANM)’. The dimensionless transverse-integrated
neutron diffusion equations (3) are written in the matrix
form as

d - "o SE
_du—zcbk(u)+Bi oF ) =-)"s5Rlu) (19
i=0

where ®*(u) = col{ @& (u),..., 0% (u)},
Sh = col{ 8, 864 1
Imposing two constraints:
1 I — = — -
5 j O (u)du=3*, and ®*(+1) =", (20)
-1

where @ (u) = col{ ®¥ (u),..., 5 ()},

we obtain a well-possessed boundary value problem.
The transverse-integrated current vector is defined as

dd* (u)

) =—-d*
s (W) =—dy—

where d —dlag{dlx, d'éx }

Solving the Eq. (19) with the constraints (20 analytically
using the symbolic manipulator Mathematica'®, the
transverse-integrated current on the right surface of the
node is expressed as follows

e = —d" {ﬁ (B, +1,(B])D" +

2 —
2 i BOSS } (22)
i=0

where ﬁ(éﬁ) + 1?5(]§12() are the matrix functions.

The matrix functions fl(]éﬁ)+1?5(]§ﬁ) are defined by the
following scalar functions:

fam () = ()., fs(x)} =

o I-T  1-T TG+x)-3
X——%>» > 1- B 5 23
{ r> r r’x Ix ’x’ } @)

Tanh(v/x) _ Tanh(\/H)/\/H,ifx>O
\/; Tan(\/H)/\/H, ifx<0.

There are several methods to compute functions of marices
(see, for example, Ref. 17). D. Vogel applied the similarity
transformation in the multigroup extension of ANM."® If

where T =

the buckling matrix E}ﬁ has G linearly independent

eigenvectors the matrix function can be computed using the
Lagrange-Sylvester polynomial defined as follows'*?’

A A G n
f(A) = f(hy)E,(Ay), 24)
g=1
~ G ~ A
EcAr)= [T (A-ni) /b, -2y).
=L g

where 1 is an identity matrix; and Eg(A, L) is a projector

into the eigensubspace of A corresponding to A,.
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The representation (24) gives a simple method to compute
the matrix functions in the case of 2 neutron energy groups.
The only unknown in the expression (22) for the

surface-averaged current j],f(+1) is the surface-averaged

flux E)E. To find the surface-averaged flux, the flux and

current continuity conditions are used. They are written as
follows

Tk _ gkt
O ="
and

B, 2, R
—dy {f. (BD, +H,(BHDY + D fis (Bi)si?} =—dy" x
i=0

— N . 2 . a
{fl (BIEH )chH + fz (Blz<+1 )CDIE-*—l + Z (_1)] fi+3 (Bi)sxl?l }

i=0

The continuity equations are reduced to G equations with
respect of the surface-averaged flux Ci)i. Then, the nodal

surface-averaged current is computed using the expression
(22).

It is worth to note that the matrix function approach
can be applied for the other nodal methods

2875_ 2744 _ 75
15+x  21+2x ) 15+x°

525+x(15+x) 5 21(5+2x) 25)
(15+x)(10.5+x) " 15+x " 5(15+x)(21+2x)

o (%) ={ %(— 66+ 2x +

2875_ 2744 B 75
15+x 21+2x /S 15+x°

Py (0= { %(—66+2x+

(15+x)10.5+x)  15+x  5(15+x)(21+2x)
fam (0 = oy (%), if x>0, the PNM
functions (25) can be used to remove the singularities of
the ANM functions (23) around 0. Such way was used in
Ref. 11 forall’digenvalues. An another approach to solve
this problem is an application of the Taylor or Pade

expansion of the ANM matrix functions as performed in
Ref. 21.

525+x(15+x)  2-5 2:21(5+2x) }

Because

V.NUMERICAL RESULTS

The two-node kernels of the polynomial, semi-analytic
and analytic nodal methods have been incorporated into
computer code SKETCH-N""3, Recalculation of the nodal

coupling coefficients is performed after a fixed number of
outer iterations. The outer iterations are accelerated by the
Chebyshev polynomials. The Wielandt shift is applied to
reduce a dominance ratio of the iteration matrix. The
Block SSOR method is implemented as an inner iteration
technique. The number of inner iterations per outer
iteration is fixed and equal to 2 for the presented
calculations. The following convergence criteria are
applied

| max min

k. k.
eff = Meff Irﬁigx‘q)g(l)_q)g(l_])‘

<&, and
2 max‘(l)lg (1)‘
k.g

/

G
> VIR @5 (i- 1)
g=1

SC(p’

>

where kgt = max
k

G
> VEL @ (i)
g=1

/

i is the outer iteration index, &, , &, are 107 for the

G
> VIR @ (i- 1)
g=1

min _ .
off = I'Ilkln

>

G
> VIR @5 (i)
g=1

presented results.

We have carried out calculations of the classical LWR
benchmark problems in order to verify the code and to
compare the nodal methods. The problems include the 2D
& 3D IAEA PWR problems™, 2D BIBLIS PWR checker-
board-loaded core® and initial conditions of the neutron
kinetics benchmarks: 3D LMW LWR problem*, 2D and
3D BWR LRA problems®. The results of the calculations
are presented in Table I. A comparison of the SKETCH-N
results is performed against the reference solutions taken
from literature, except for the IAEA-3D problem. For this
problem, a reference solution is calculated by the
SKETCH-N code using SANM on the fine spatial mesh
34x34x38 (5 cm in X-Y directions and 10 c¢cm in Z
direction). The NEM results compiled from different
sources are added for a comparison. Small discrepancies in
the PNM and NEM results are mostly due to different
techniques of the quadratic leakage approximation. The
presented results demonstrate that all nodal methods result
in acceptable accuracy for the traditional LWR
benchmarks. The maximum errors of assembly-averaged
power density are less than 2.5% and the errors in
eigenvalue are about 10-15 pcm. The accuracy of the
semi-analytic and analytic methods is usually better than
that of PNM, except for the BIBLIS-2D checker-board-
loaded core. The Table I show also a number of nonlinear
iterations and a total number of outer iterations. The
nonlinear iteration procedure is very efficient, the number
of the nodal coupling coefficient updates does not exceed
10 for all computed problems.

A next set of calculations is performed for the realistic
PWR NEACRP benchmark®. Table II presents the results
of Case Al (Hot Zero Power). A reference solution is
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generated using SANM on the fine spatial mesh 34x34x36.
A reference critical boron concentration is equal to 561.25
ppm. The Table II contains also the NEM results of Ref.
11. The PNM and NEM results are practically identical,
which agree with the theory. The both ANM and SANM
give a significant improvement in accuracy of the
calculations in comparison with the NEM/PNM for the
both spatial meshes (1 and 4 nodes per assembly). SANM
and ANM demonstrate the similar accuracy. This is well
expected, because if the source term defined as

G G

Qb =75 D vsh @b + Y sy, @b
eff g=1 g#g
is presented by a second order polynomial, the SANM
method provides an analytical solution of the transverse-
integrated equation (3). The error of such approximation is
significantly smaller than the error of the quadratic leakage
approximation.

We also compared the CPU time of the two
approaches: the traditional way of solving the two-node
problem as it is described, for example, in the Sec. II for
PNM and the matrix function theory approach applied in
the ANM two-node kernel. The ANM two-node kernel
requires practically the same computing time as that of
PNM. To make the comparison complete, the PNM two-
node kernel based on the matrix function theory is also
implemented. Comparing the results of the two PNM
kernels we conclude that the two-node kernels based on the
matrix function theory results in 25 % saving of computing
time.

VI. CONCLUSIONS

The two-node kernels of the polynomial, semi-analytic
and analytic nodal methods have been developed for the
solution of the neutron diffusion equations in X-Y-Z
geometry.  The polynomial and semi-analytic nodal
methods are based on the orthogonal set of the basic
functions. The two-node kernels of these methods are
implemented using the traditional approach developed
originally for NEM. Orthogonality of the basic functions
results that the initial system of 8G nodal equations is
reduced to G equations for the 2™ expansion coefficient of
the node k+1 and 2G equations for the 1% expansion
coefficients of the node k and k+1.

The two-node kernel of ANM is implemented using an
alternative technique based on the matrix function theory.
The transverse-integrated equations with two constraints
are solved analytically. The analytic solution is used to
express the surface-averaged current in terms of the node-
averaged flux, surface-averaged flux and the transverse
leakage expansion coefficients. Five matrix functions used
in this expression are computed using the Lagrange-
Sylvester interpolation polynomial. The surface-averaged

flux is calculated from the flux and current continuity
conditions. Numerically, the two-node problem is led to a
computation of G eigenvalues of the buckling matrix, a
calculation of the five matrix functions and a solution of G
equations for the surface- averaged flux.

The two-node kernels of the nodal methods have been
incorporated into the code SKETCH-N. LWR benchmark
problem calculations have been performed in order to
compare the nodal methods and numerical algorithms. The
numerical results have demonstrated good accuracy of the
all nodal methods for the classical LWR benchmarks. The
maximum errors of assembly-averaged power density are
less than 2.5 % and the errors in eigenvalue are about 10-15
pcm. An additional comparison has been done for the
realistic PWR NEACRP benchmark problem. The analytic
methods demonstrate a clear advantage in accuracy in the
comparison with NEM/PNM. SANM show the same
accuracy as ANM. The numerical results of the 2 group
problems demonstrate an advantage of the matrix function
approach in the comparison with the traditional way of the
two-node problem solution. A saving in computing time is
about 25%.

A development of the SANM two-node kernel based
on the matrix function theory and the comparison of the
methods for multi-group problems are subjects of ongoing
efforts.
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Table I. Numerical Results of the Traditional LWR Benchmark Problems.
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Problem, Nodal Ena/Eavs Position of K Reference Akeg, No. Iterations:
Mesh Method % Emnax (X,Y) Kegt pem Nonlinear/Outers
NEM?* -2.05/- (6,5) 1.0295 1.0296 - -/32
IAEA-2D PNM -1.8/0.7 (6.,6) 1.02950 -8
9x9 SANM 0.5/0.2 (6,5) 1.02956 | 1.029585% -3 9/28
ANM 1.1/0.3 (5,7) 1.02962 +3
NEM?’ 1.25/0.49 - 1.02528 | 1.02512 - -
BIBLIS-2D PNM -1.2/0.4 (1,8) 1.02521 +10
9x9 SANM 1.8/0.5 (6,6) 1.02526 | 1.025110% +15 10/30
ANM 2.2/0.7 (6,6) 1.02532 +21
NEM?® 1.36/0.26 (L,1) 0.996329 - 122
BWR-2D PNM 1.9/0.6 (1,1 0.99626 | 0.99636% -10
11x11 SANM 0.5/0.2 (1,1) 0.99635 -1 8/28
ANM 0.2/0.1 9,6) 0.99641 +5
NEM?* -1.62/- (6,6) 1.0290 1.0290 - -24
IAEA-3D PNM -1.8/0.7 (6,6) 1.02899 -8
17x17 SANM 0.4/0.2 (6.,5) 1.02905 | 1.029074" 2 8/38
ANM 1.1/0.3 (7,5) 1.02912 +4
NEM?® 1.17/0.22 (L,1) 0.996361 - 7/21
BWR-3D PNM 1.4/0.4 (1,1) 0.99633 -4
12x12x14 SANM 0.4/0.1 ) 0.99637 | 0.996368 0 737
ANM 0.5/0.1 (8,8) 0.99643 +6
NEM?* -1.2/- (5,4) 0.99958 - /19
LMW PNM -1.3/0.4 (5,4) 0.99958 -8
6x6x10 SANM 0.4/0.1 4.4) 0.99971 | 0.99966%° +5 726
ANM 0.5/0.2 (4,4) 0.99977 +11

* Reference solution is computed by the SKETCH-N code with SANM on spatial mesh 34x34x36 (5 cm in X-Y directions and 10 cm in Z direction).

Table II. Numerical Results for NEACRP PWR REA Benchmark Problem (Case Al). Critical boron concentration
is 561.25 ppm. A reference solution is calculated by SKETCH-N Code with SANM on the mesh 34x34x38,
Reference k¢ is 1.000005.

Nodal Emax/Eav, Position of AKeg, No. of Iterations
Mesh Method % Emax (X,Y) pcm Nonlinear/Outers | CPU Time, s
NEM" 9.07/- - 83 - -
9x9x18 PNM 9.3/3.7 (6,5) 78 0.64/0.56

(1 nodes / FA) SANM 4.1/1.7 (6,5) 37 9/41 0.78
ANM 4.4/1.9 (6,5) 38 0.66
NEM' 1.96/- - 14 - -

17x17x36 PNM 2.0/0.7 (6,5) 15 2.2/1.9

(4 nodes/FA) SANM 0.4/0.1 (6,5) 3 8/41 2.7

ANM 0.4/0.1 (6,5) 3 22

#* CPU time of the PNM based on the matrix function formulation.
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